Human-Centered NLP (Language and Human Psychology)

NLP, The Course

	O		
Overall NLP Concept	Overall NLP Concept		
I. Syntax	III. Language Modeling		
II. Semantics	IV. Applications		

ю 0--

0

NLP, The Course

Overall NLP Concept

I. Syntax

Introduction to NLP; Tokenization; Words Corpora

One-hot, and Multi-hot encoding. Parts-of-Speech; Named Entities;

Parsing; Verbal Predicates; Dependency Parsing

II. Semantics

Dependency Parsing; Word Sense Disambiguation

Vector Semantics (Embeddings), Word2vec

Probabilistic Language Models Ngram Classifier, Topic Modeling

Overall NLP Concept

0.....0

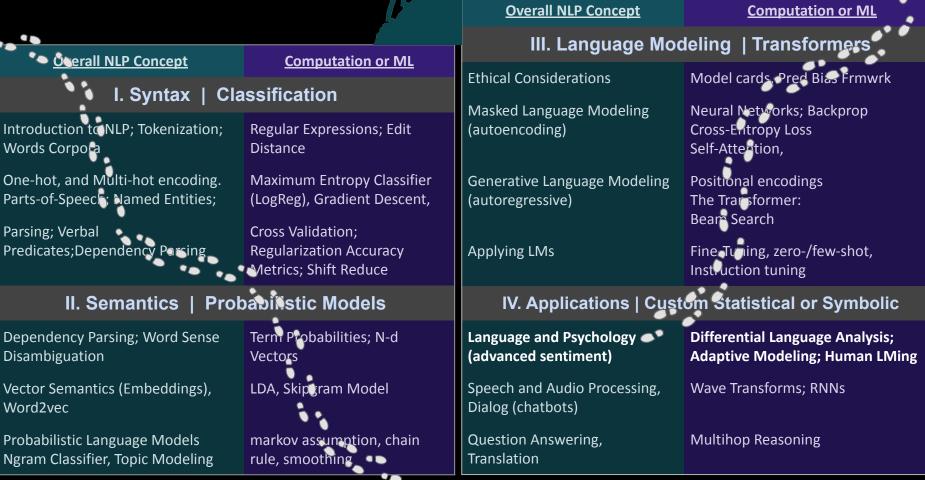
III. Language Modeling

IV. Applications

NLP The Course

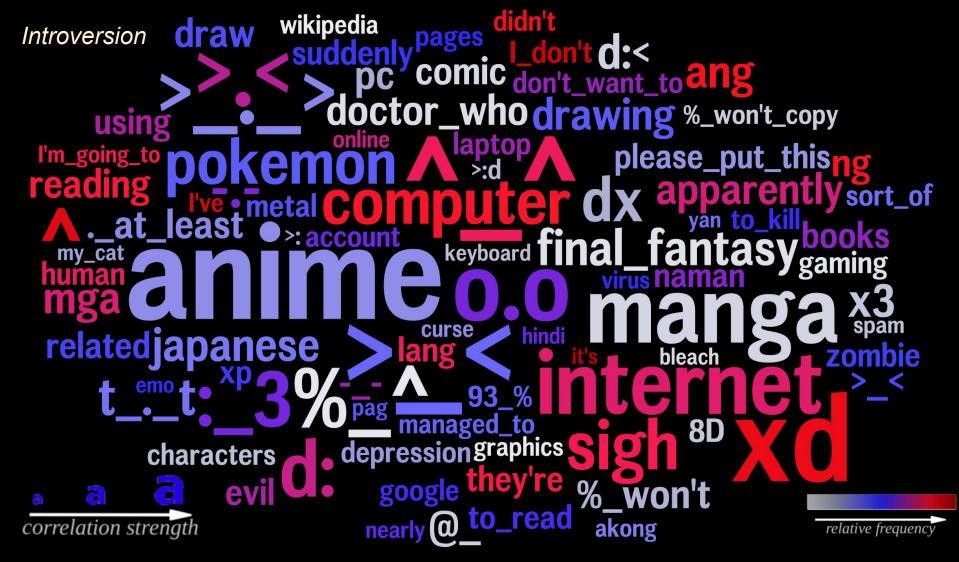
		Overall NLP Concept	Computation or ML
Overall NLP Concept	Computation or ML	III. Language Moo	leling Transformers
I. Syntax Cla		Ethical Considerations Masked Language Modeling	Model cards, Pred Bias Frmwrk Neural Networks; Backprop
Introduction to NLP; Tokenization; Words Corpora	Regular Expressions; Edit Distance	(autoencoding)	Cross-Entropy Loss Self-Attention,
One-hot, and Multi-hot encoding. Parts-of-Speech; Named Entities; Parsing; Verbal	Maximum Entropy Classifier (LogReg), Gradient Descent, Cross Validation;	Generative Language Modeling (autoregressive)	Positional encodings The Transformer: Beam Search
Predicates;Dependency Parsing	Regularization Accuracy Metrics; Shift Reduce	Applying LMs	Fine-Tuning, zero-/few-shot, Instruction tuning
II. Semantics Probabilistic Models		IV. Applications Custom Statistical or Symbolic	
Dependency Parsing; Word Sense Disambiguation	Term Probabilities; N-d Vectors	Language and Psychology (advanced sentiment)	Differential Language Analysis; Adaptive Modeling; Human LMing
Vector Semantics (Embeddings), Word2vec	LDA, Skipgram Model	Speech and Audio Processing, Dialog (chatbots)	Wave Transforms; RNNs
Probabilistic Language Models Ngram Classifier, Topic Modeling	markov assumption, chain rule, smoothing	Question Answering, Translation	Multihop Reasoning

NLP The Course

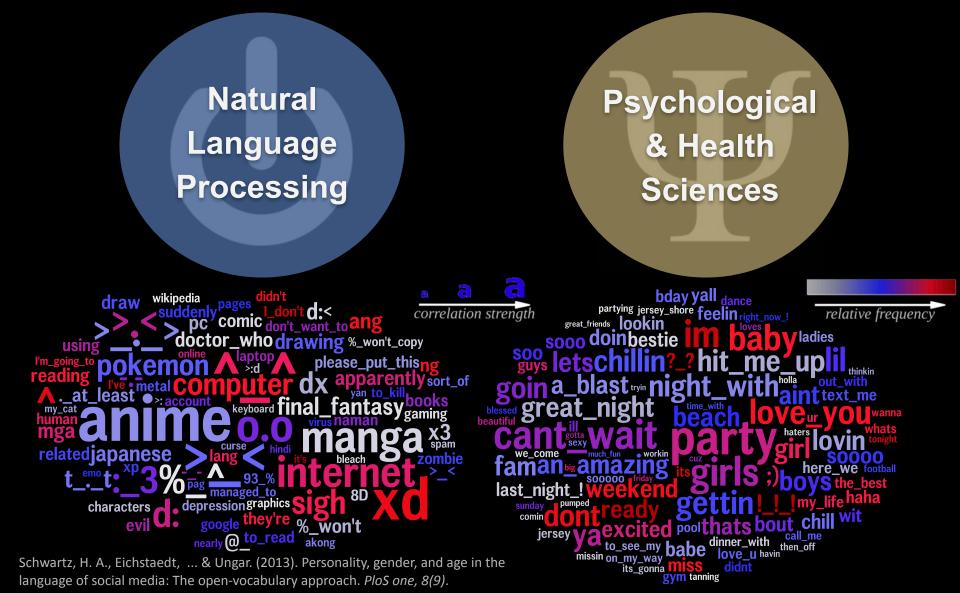


Natural Language Processing

Psychological & Health Sciences



Schwartz, H. A., Eichstaedt, ... & Ungar. (2013). Personality, gender, and age in the language of social media: The open-vocabulary approach. *PloS one*, *8*(9).



Natural Language Processing

Psychological

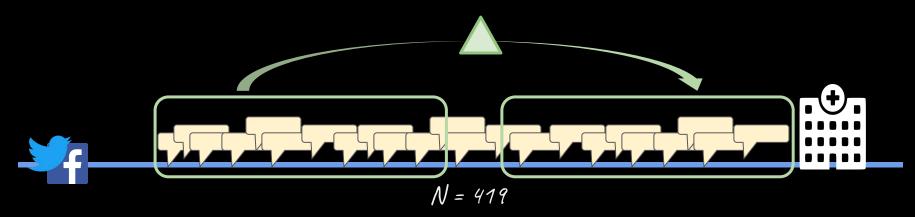
& Health

Sciences

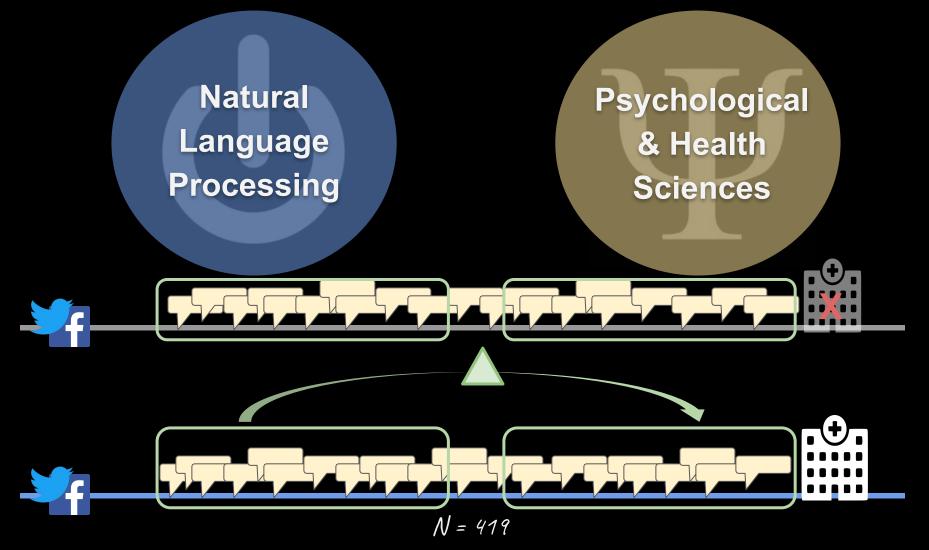
Guntuku, S. C., Schwartz, H. A., Kashyap, A., Gaulton, J. S., Stokes, D. C., Asch, D. A., ... & Merchant, R. M. (2020). Variability in Language used on Social Media prior to Hospital Visits. *Nature* - *Scientific Reports*, 10(1), 1-9.

Natural Language Processing

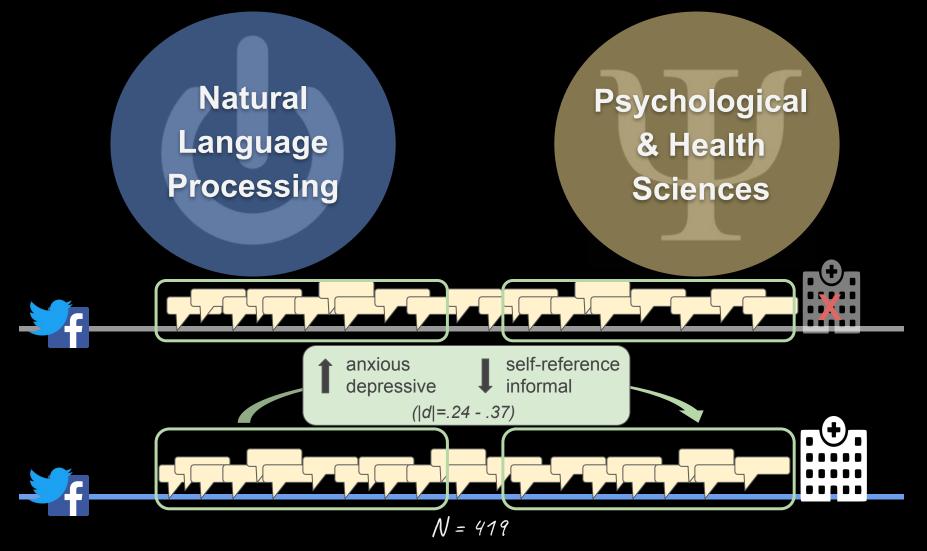
Psychological & Health Sciences



Guntuku, S. C., Schwartz, H. A., Kashyap, A., Gaulton, J. S., Stokes, D. C., Asch, D. A., ... & Merchant, R. M. (2020). Variability in Language used on Social Media prior to Hospital Visits. *Nature - Scientific Reports*, 10(1), 1-9.



Guntuku, S. C., Schwartz, H. A., Kashyap, A., Gaulton, J. S., Stokes, D. C., Asch, D. A., ... & Merchant, R. M. (2020). Variability in Language used on Social Media prior to Hospital Visits. *Nature - Scientific Reports*, 10(1), 1-9.



Guntuku, S. C., Schwartz, H. A., Kashyap, A., Gaulton, J. S., Stokes, D. C., Asch, D. A., ... & Merchant, R. M. (2020). Variability in Language used on Social Media prior to Hospital Visits. *Nature - Scientific Reports*, 10(1), 1-9.

Natural Language Processing

Psychological & Health Sciences

Overly Simplified Problem-Statement:

Natural language is written by

Overly Simplified Problem-Statement:

Natural language is written by **people.**

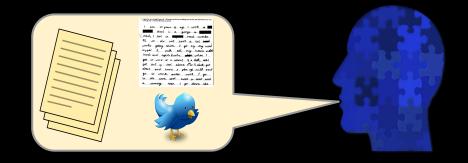
Overly Simplified Problem-Statement:

Natural language is written by **people.**

Problem

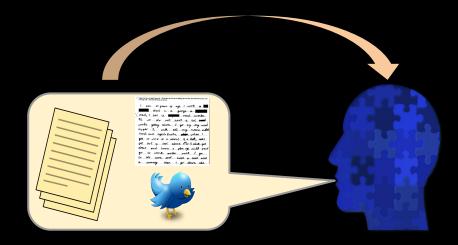
Natural language is written by **people**.

Natural language is generated by people.



People have different beliefs, backgrounds, styles, vocabularies, preferences, knowledge, personalities, ...

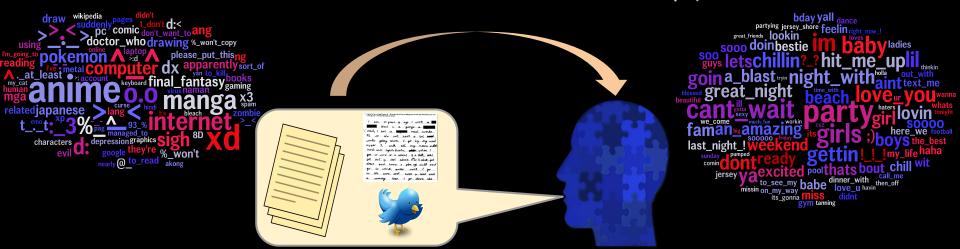
Natural language is generated by people.



People have different beliefs, backgrounds, styles, vocabularies, preferences, knowledge, personalities, ...,

and our language reflects these differences.

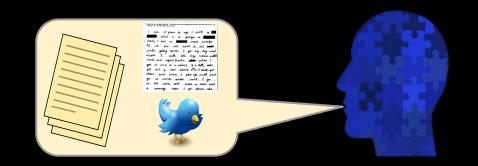
Natural language is generated by people.



People have different beliefs, backgrounds, styles, vocabularies, preferences, knowledge, personalities, ...,

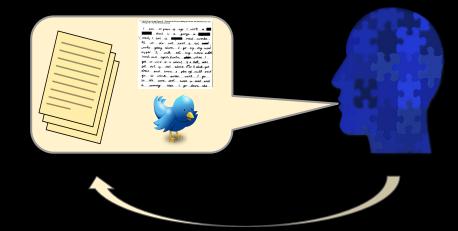
and our language reflects these differences.

Human Centered NLP:



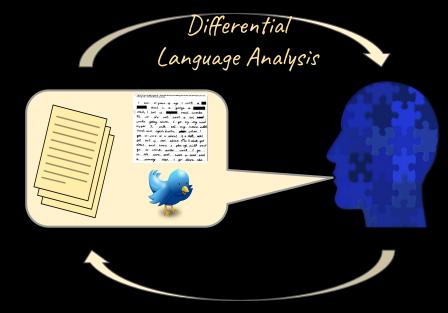
Human Centered NLP:

1. Model language as a human process



Human Centered NLP:

- 1. Model language as a human process
- 2. Use language to better understand humans.



Human-Centered NLP – We will cover:

- 1. Differential Language Analysis
- 2. Human Factor Adaptation
- 3. Human Language Modeling

Input:

Linguistic features

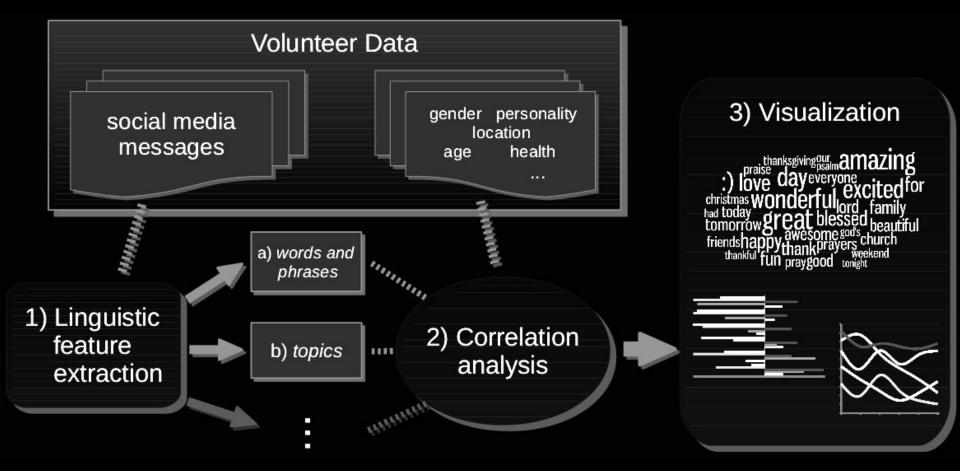
Human or community attribute

Output:

Features distinguishing attribute

Goal: Data-driven insights about an attribute

E.g. Words distinguishing communities with increases in real estate prices.



Methods of Correlation Analysis:

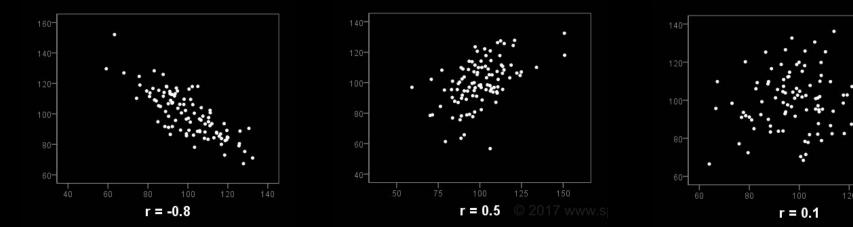
• Pearson Product-Moment Correlation Limitation: Doesn't handle controls

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

Methods of Correlation Analysis:

• Pearson Product-Moment Correlation Limitation: Doesn't handle controls

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$



Methods of Correlation Analysis:

 Pearson Product-Moment Correlation Limitation: Doesn't handle controls

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

• Standardized Multivariate Linear Regression Fit the model: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_m X_{m1} + \epsilon_i$

Methods of Correlation Analysis:

• Pearson Product-Moment Correlation Limitation: Doesn't handle controls

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

• <u>Standardized</u> Multivariate Linear Regression Fit the model: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_m X_{m1} + \epsilon_i$

Adjust all variables to have "mean center" and "unit variance":

Methods of Correlation Analysis:

 Pearson Product-Moment Correlation Limitation: Doesn't handle controls

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

• <u>Standardized</u> Multivariate Linear Regression Fit the model: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_m X_{m1} + \epsilon_i$

Adjust all variables to have "mean center" and "unit variance":

$$z = \frac{x - \mu}{\sigma}$$
$$\mu = \text{Mean}$$
$$\sigma = \text{Standard Deviation}$$

 $J = \sum (y - \hat{y})^2$ -- "Sum of Squares" Error

Methods of Correlation Analysis:

• Pearson Product-Moment Correlation Limitation: Doesn't handle controls

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

• Standardized Multivariate Linear Regression Fit the model: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_m X_{m1} + \epsilon_i$ Option 1: Gradient Descent:

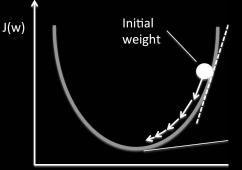
Methods of Correlation Analysis:

• Pearson Product-Moment Correlation Limitation: Doesn't handle controls

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

• Standardized Multivariate Linear Regression Fit the model: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_m X_{m1} + \epsilon_i$ Option 1: Gradient Descent:

 $J = \sum (y - \hat{y})^2$ -- "Sum of Squares" Error Option 2: Matrix model: $Y = X\beta + \epsilon$



Methods of Correlation Analysis:

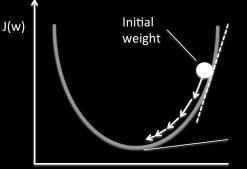
• Pearson Product-Moment Correlation Limitation: Doesn't handle controls

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

• Standardized Multivariate Linear Regression Fit the model: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_m X_{m1} + \epsilon_i$ Option 1: Gradient Descent:

 $J = \sum (y - \hat{y})^2$ -- "Sum of Squares" Error Option 2: Matrix model: $Y = X\beta + \epsilon$ Matrix Computation Solution:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$



Methods of Correlation Analysis:

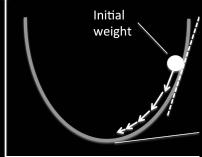
• Pearson Product-Moment Correlation Limitation: Doesn't handle controls

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

• Standardized Multivariate Linear Regression Fit the model: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_m X_{m1} + \epsilon_i$ Option 1: Gradient Descent: $J = \sum (y - \hat{y})^2$ -- "Sum of Squares" Error Option 2: Matrix model: $Y = X\beta + \epsilon$

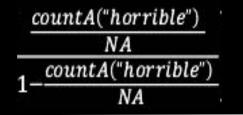
Matrix Computation Solution:

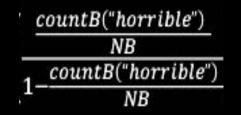
$$\hat{\beta} = (X^T X)^{-1} X^T Y$$



Methods of "Correlation" Analysis for binary outcomes:

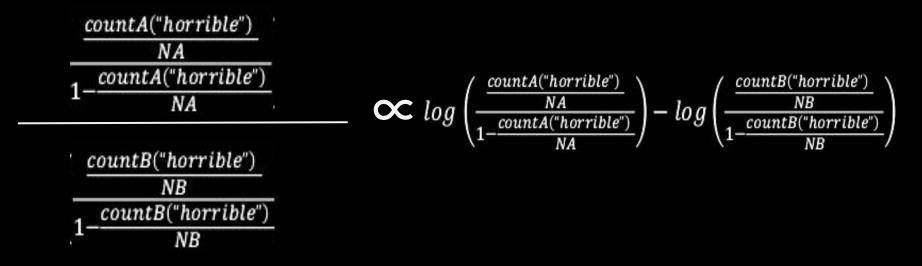
- Logistic Regression over Standardized variables
- Odds Ratio





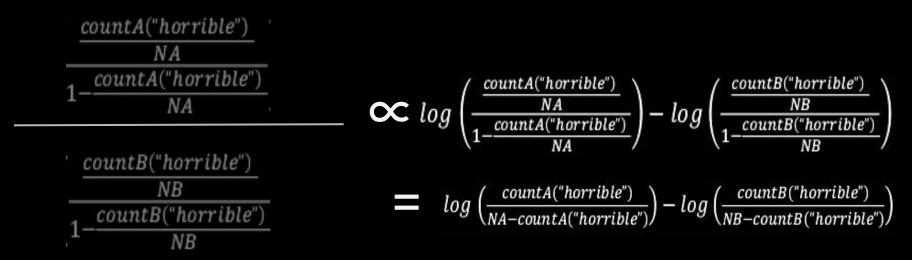
Methods of "Correlation" Analysis for binary outcomes:

- Logistic Regression over Standardized variables
- Odds Ratio



Methods of "Correlation" Analysis for binary outcomes:

- Logistic Regression over Standardized variables
- Odds Ratio



 $log\left(\frac{countA("horrible")}{NA-countA("horrible")}\right) - log\left(\frac{countB("horrible")}{NB-countB("horrible")}\right)$

• Odds Ratio using Informative Dirichlet Prior

$$\delta_w^{(i-j)} = \log\left(\frac{f_w^i + \alpha_w}{n^i + \alpha_0 - (f_w^i + \alpha_w)}\right) - \log\left(\frac{f_w^j + \alpha_w}{n^j + \alpha_0 - (f_w^j + \alpha_w)}\right)$$
(20.9)

 $log\left(\frac{countA("horrible")}{NA-countA("horrible")}\right) - log\left(\frac{countB("horrible")}{NB-countB("horrible")}\right)$

Odds Ratio using <u>Informative Dirichlet Prior</u>

$$\delta_{w}^{(i-j)} = \log\left(\frac{f_{w}^{i} + \alpha_{w}}{n^{i} + \alpha_{0} - (f_{w}^{i} + \alpha_{w})}\right) - \log\left(\frac{f_{w}^{j} + \alpha_{w}}{n^{j} + \alpha_{0} - (f_{w}^{j} + \alpha_{w})}\right)$$
(20.9)

(where n^i is the size of corpus i, n^j is the size of corpus j, f_w^i is the count of word w in corpus i, f_w^j is the count of word w in corpus j, α_0 is the size of the background corpus, and α_w is the count of word w in the background corpus.)

Odds Ratio using <u>Informative Dirichlet Prior</u>

$$\delta_{w}^{(i-j)} = \log\left(\frac{f_{w}^{i} + \alpha_{w}}{n^{i} + \alpha_{0} - (f_{w}^{i} + \alpha_{w})}\right)$$

(where n^i is the size of corpus *i*, n^j is the sin corpus *i*, f_w^j is the count of word *w* in corpus, and α_w is the count of word *w* in

 $log\left(\frac{countA("horrible")}{NA-countA("horrible")}\right) - log\left(\frac{countB("horrible")}{NB-countB("horrible")}\right)$

$$g\left(\frac{f_w^j + \alpha_w}{n^j + \alpha_0 - (f_w^j + \alpha_w)}\right) \qquad (20.9)$$

pus j, f_w^i is the count of word wis the size of the background 1 corpus.)

Bayesian term for "smoothing": accounts for uncertainty as a function of event frequency (i.e. words observed less) by integrating "prior" beliefs mathematically.

Odds Ratio using <u>Informative Dirichlet Prior</u>

$$\delta_{w}^{(i-j)} = \log\left(\frac{f_{w}^{i} + \alpha_{w}}{n^{i} + \alpha_{0} - (f_{w}^{i} + \alpha_{w})}\right)$$

(where n^i is the size of corpus i, n^j is the sin corpus i, f_w^j is the count of word w in corpus, and α_w is the count of word w in

(M)

 $log\left(\frac{countA("horrible")}{NA-countA("horrible")}\right) - log\left(\frac{countB("horrible")}{NB-countB("horrible")}\right)$

$$g\left(\frac{f_w^j + \alpha_w}{n^j + \alpha_0 - (f_w^j + \alpha_w)}\right) \qquad (20.9)$$

bus j, f_w^i is the count of word wis the size of the background 1 corpus.)

Bayesian term for "smoothing": accounts for uncertainty as a function of event frequency (i.e. words observed less) by integrating "prior" beliefs mathematically. "Informative": the prior is based on past evidence. Here, the total frequency of the word.

 $log\left(\frac{countA("horrible")}{NA-countA("horrible")}\right) - log\left(\frac{countB("horrible")}{NB-countB("horrible")}\right)$

• Odds Ratio using Informative Dirichlet Prior

$$\delta_w^{(i-j)} = \log\left(\frac{f_w^i + \alpha_w}{n^i + \alpha_0 - (f_w^i + \alpha_w)}\right) - \log\left(\frac{f_w^j + \alpha_w}{n^j + \alpha_0 - (f_w^j + \alpha_w)}\right)$$
(20.9)

(where n^i is the size of corpus i, n^j is the size of corpus j, f_w^i is the count of word w in corpus i, f_w^j is the count of word w in corpus j, α_0 is the size of the background corpus, and α_w is the count of word w in the background corpus.)

 $log\left(\frac{countA("horrible")}{NA-countA("horrible")}\right) - log\left(\frac{countB("horrible")}{NB-countB("horrible")}\right)$

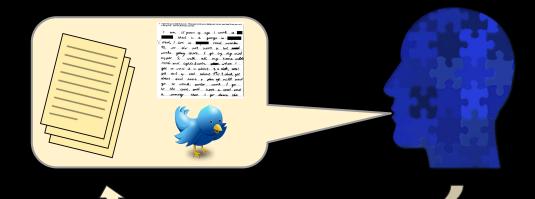
Odds Ratio using Informative Dirichlet Prior

$$\delta_w^{(i-j)} = \log\left(\frac{f_w^i + \alpha_w}{n^i + \alpha_0 - (f_w^i + \alpha_w)}\right) - \log\left(\frac{f_w^j + \alpha_w}{n^j + \alpha_0 - (f_w^j + \alpha_w)}\right)$$
(20.9)

(where n^i is the size of corpus i, n^j is the size of corpus j, f_w^i is the count of word w in corpus i, f_w^j is the count of word w in corpus j, α_0 is the size of the background corpus, and α_w is the count of word w in the background corpus.)

Final score is standardized (z-scored):
$$\hat{\delta}_w^{(i-j)}$$
, where
 $\sqrt{\sigma^2 \left(\hat{\delta}_w^{(i-j)} \right)}$, $\sigma^2 \left(\hat{\delta}_w^{(i-j)} \right) \approx \frac{1}{f_w^i + \alpha_w} + \frac{1}{f_w^j + \alpha_w}$
(Monroe et al., 2010; Jurafsky, 2017)

Differential Language Analysis



https://dlatk.github.io/ Getting Started in Colab