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NLP, The Course

Overall NLP Concept

I. Syntax 

Introduction to NLP; Tokenization; Words Corpora

One-hot, and Multi-hot encoding. 
Parts-of-Speech; Named Entities; 

Parsing; Verbal Predicates;Dependency Parsing

II. Semantics 

Dependency Parsing; Word Sense Disambiguation

Vector Semantics (Embeddings), Word2vec

Probabilistic Language Models
Ngram Classifier, Topic Modeling

Overall NLP Concept

III. Language Modeling  

Ethical Considerations

Masked Language Modeling (autoencoding)

Generative Language Modeling (autoregressive)

Applying LMs

IV. Applications 

Language and Psychology 
(advanced sentiment)

Speech and Audio Processing, Dialog (chatbots)

Question Answering, Translation
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The Transformer:
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Instruction tuning
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Problem

Natural language is written by people.

That’s sick

(Veronica’s 
Grandmother) (Veronica Lynn)
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Human Centered NLP:
1. Model language as a human process
2. Use language to better understand humans. 

Differential 
Language Analysis



Human-Centered NLP – We will cover: 

1. Differential Language Analysis
2. Human Factor Adaptation
3. Human Language Modeling



Input:

Linguistic features

Human or community attribute

Output: 

Features distinguishing attribute

Goal: Data-driven insights about an attribute

Differential Language Analysis



E.g. Words distinguishing communities with increases in real estate prices.  
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Differential Language Analysis

● Odds Ratio using Informative Dirichlet Prior

 

(Monroe et al., 2010; Jurafsky, 2017)

Bayesian term for “smoothing”: accounts for uncertainty as a 
function of event frequency (i.e. words observed less) by 
integrating “prior” beliefs mathematically. 
“Informative”: the prior is based on past evidence. Here, the 
total frequency of the word.
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Differential Language Analysis

● Odds Ratio using Informative Dirichlet Prior

 

(Monroe et al., 2010; Jurafsky, 2017)

Final score is standardized (z-scored):                                , where



Python Library, CLI, and 
Colab for DLA

https://dlatk.github.io/
Getting Started in Colab

Differential 
Language Analysis

https://dlatk.github.io/
https://colab.research.google.com/drive/10WMCmnKzwywZR7s2et5xx9CcoWBNmhLY?usp=sharing

